## E-5311

M.Sc. (I ${ }^{\text {st }}$ Semester) Examination, 2021 MATHEMATICS

Paper - I
(Advanced Abstract Algebra - I)
Time Allowed : Three Hours
Maximum Marks : 70
Minimum Pass Marks : 24
Note : Section A is compulsory and attempt any five questions from section $B$ and any five questions from section $C$ and any three questions from section $D$.

```
SECTION -A
```

Q. 1. Choose the correct answer : $5 \times 2=10$
(i) A group $G$ for which $Z_{m}(G)=G$ for some positive integer $m$ then:
(a) $G$ is solvable
(b) $G$ is nilpotent
(c) $G$ is both solvable and nilpotent
(d) None is correct
(ii) Left R module will be same as right R module if :
(a) R is a ring with unity
(b) R is a commutative ring
(c) R is without zero divisors
(d) None is correct
(iii) The characteristic and minimal polynomial for a linear operator $T$ have :
(a) Different roots
(b) Same roots
(c) Some times different and sometimes same
(d) None of these
(3)
(iv) The index of the Nilpotent matrix $A=\left[\begin{array}{lll}-2 & 1 & 1 \\ -3 & 1 & 2 \\ -2 & 1 & 1\end{array}\right]$ is :
(a) 1
(b) 2
(c) 3
(d) None of these
(v) Let $A$ be an $m \times n$ matrix over a principal ideal domain, then which of the following is correct :
(a) Row rank $A=$ column rank $B$
(b) Row rank $\mathrm{A}<$ column rank B
(c) Row rank A > column rank A
(d) None of these
(4)

## SECTION - B

Note : Attempt any five questions.
Q. 1. Define commutator subgroup of a group.
Q. 2. Define free module.
Q. 3. State Schure's lemma.
Q. 4. Define characteristic roots of a matrix.
Q. 5. Define Nilpotent transformation.
Q. 6. Define invariant factors of a matrix $A$.
Q. 7. Define companion matrix.

SECTION - C

Note: Attempt any five questions.
Q. 1. Prove that any finite $p$-group is solvable.
Q. 2. Prove that the minimal polynomial of a linear
oprator $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ divides its characteristic polynomial.
Q. 3. Find the Smith normal form of the matrix :

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 0
\end{array}\right]
$$

Q. 4. Let $A$ and $B$ be $R$-submodules of $R$-modules $M$ and N respectively then prove :

$$
\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}
$$

Q. 5. Prove that every Nilpotent group is solvable.
Q. 6. Let $R$ be a ring with unity. Then prove an $R$ module $M$ is cyclic iff $M \cong \frac{R}{I}$ for some left ideal I of $R$.
Q. 7. Show that the Abelian group generated by $x_{1}$ and $x_{2}$ subject to $2 x_{1}=0,3 x_{2}=0$ is isomorphic to Z / (6).

## SECTION - D

Note : Attempt any three questions.
Q. 1. Prove that a Group G is solvable if and only if $G^{(k)}=(e)$ for some integer $R$.
Q. 2. Prove that a Jordan block $J$ may be written as the sum of a scalar matrix and a Nilpotent.

## (7)

Q. 3. State and prove fundamental structure theorem
for finitely generated module over a principal ideal
domain.
Q. 4. Let $M$ be a free $R$ module with a Basis
$\left\{e_{1}, e_{2}, \ldots \ldots e_{n}\right\}$ then prove $M \simeq R^{n}$.

