(2)

J-1051

M.A./M.Sc. (Final) Examination, 2021 MATHEMATICS

Paper - I

(Integration Theory & Functional Analysis)

Time Allowed: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 36

Note: Attempt any five questions. All questions carry equal marks.

- **Q. 1.** State and prove that Radon-Nikodym theorem.
- Q. 2. Prove that a union of any countable collective of positive subsets of X is positive.
- Q. 3. State and prove that Lebesgue decomposition theorem.

Q. 4. State Fubini's theorem and explain why:

$$\int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} dx \right\} dy \neq \int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} dy \right\} dx$$

- Q. 5. Prove that in a normed linear space, every convergent sequence is a Cauchy sequence.
- **Q. 6.** Let N be a normed linear space and let $x, y \in N$, then show that :

$$\|x\| - \|y\| \le \|x - y\|$$

- **Q. 7.** State and prove closed graph theorem.
- **Q. 8.** Show that ℓ_2^n is a Hilbert space.
- Q. 9. Prove that if H is a Hilbert space, then H is reflexive.

J-1051 P.T.O.

J-1051

(3)

Q. 10. If H is an operator on a Hilbert space H, then

show that :

$$T = 0 \Leftrightarrow (Tx, y) = 0, \forall x, y$$

J-1051