Printed Pages - 3

I-262

B.C.A. (Part-I) Examination, 2020 (Theoretical Foundation of Computer Science)

Paper - II

CALCULUS AND STATISTICAL ANALYSIS

Time Allowed: Three Hours

Maximum Marks: 50

Minimum Pass Marks: 20

Note : Attempt any one question from each unit. All questions carry equal marks.

Unit-I

Q. 1. Prove that:

10

$$\lim_{x\to -1} \left(2x^2+3\right) = 5$$

OR

Test the following function for continuity at x = 0:

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

I-262 P.T.O.

(2)

Unit-II

Q. 2. $x = \sin t \sqrt{\cos 2t}$, $y = \cos t \sqrt{\cos 2t}$ then find $\frac{dy}{dx}$. **10**

OR

If $y = (1 + x)^x$, then find $\frac{dy}{dx}$.

Unit-III

Q. 3. Find the equations of the tangent at the point

(x, y) of the following curves :

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

OR

Investigate for what value of x, $5x^6 - 18x^5 + 15x^4 - 10$ is a maximum or minimum.

Unit-IV

Q. 4. From a bag containing 5 white, 7 red and 4 blackballs a man draws 3 at random, find theprobability of being all white.

I-262

10

(3)

OR

If $\mathsf{E_1}$ and $\mathsf{E_2}$ are two events, then prove :

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Unit-V

Q. 5. Represent the following distribution by a frequency polygon:

Score	Frequency	Score	Frequency	
90 – 99	2	50 – 59	14	
80 – 89	12	40 – 49	3	
70 – 79	22	30 – 39	1	
60 – 69	20	20 – 29	1	

OR

Find the mean deviation from the arithmetic mean for the following frequency distribution :

Class	0 – 6	6 – 12	12 – 18	18 – 24	24 – 30
Frequency	8	10	12	9	5

I-262 700